3 research outputs found

    Labeling of mesenchymal stromal cells with iron oxide-poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties

    Get PDF
    Background aims. Mesenchymal stromal cells (MSC) are the focus of research in regenerative medicine aiming at the regulatory approval of these cells for specific indications. To cope with the regulatory requirements for somatic cell therapy, novel approaches that do not interfere with the natural behavior of the cells are necessary. In this context in vivo magnetic resonance imaging (MRI) of labeled MSC could be an appropriate tool. Cell labeling for MRI with a variety of different iron oxide preparations is frequently published. However, most publications lack a comprehensive assessment of the noninterference of the contrast agent with the functionality of the labeled MSC, which is a prerequisite for the validity of cell-tracking via MRI. Methods.We studied the effects of iron oxide-poly(L-lactide) nanoparticles in MSC with flow cytom-etry, transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), Prussian blue staining, CyQuant® proliferation testing, colony-forming unit-fibroblast (CFU-F) assays, flow chamber adhesion testing, immuno-logic tests and differentiation tests. Furthermore iron-labeled MSC were studied by MRI in agarose phantoms and Wistar rats. Results. It could be demonstrated that MSC show rapid uptake of nanoparticles and long-lasting intracellular persistence in the endosomal compartment. Labeling of the MSC with these particles has no influence on viability, differentiation, clonogenicity, proliferation, adhesion, phenotype and immunosuppressive properties. They show excellent MRI properties in agarose phantoms and after subcutaneous implantation in rats over several weeks. Conclusions. These particles qualify for studying MSC homing and trafficking via MRI

    Rescue of Non-Informative Circulating Tumor DNA to Monitor the Mutational Landscape in NSCLC

    No full text
    In non-small cell lung cancer (NSCLC) the usage of plasma-derived circulating tumor DNA (ctDNA) have come into focus to obtain a comprehensive genetic profile of a given lung cancer. Despite the usage of specific sampling tubes, archived plasma samples as well as inappropriately treated blood samples still cause a loss of information due to cell lysis and contamination with cellular DNA. Our aim was to establish a reliable protocol to rescue ctDNA from such non-informative samples to monitor the mutational landscape in NSCLC. As a proof-of-concept study we used archived plasma samples derived from whole blood EDTA samples of 51 patients suffering from NSCLC. Analysis of the isolated plasma DNA determined only a small fraction of ctDNA in a range of 90–250 bp. By applying a specific purification procedure, we were able to increase the informative ctDNA content and improve in a cohort of 42 patients the detection of driver mutations from 32% to 79% of the mutations found in tissue biopsies. Thus, we present here an easy to perform, time and cost effective procedure to rescue non-informative ctDNA samples, which is sufficient to detect oncogenic mutations in NGS approaches and is therefore a valuable technical improvement for laboratories handling liquid biopsy samples

    Efficacy of Immune Checkpoint Inhibitors Alone or in Combination With Chemotherapy in NSCLC Harboring ERBB2 Mutations

    No full text
    Introduction: In contrast to other driver mutations, no targeted therapies have yet been approved in ERBB2-mutated NSCLC (HER2mu NSCLC). Nevertheless, several compounds have revealed promising early efficacy data, which need to be evaluated in the context of current standard approaches. Although data on the efficacy of immune checkpoint inhibitors (ICIs) in second or subsequent lines of treatment remain limited and conflicting, there are virtually no data on patient outcome under ICI/platinum-doublet combinations in the first-line setting. Methods: We retrospectively evaluated outcomes of patients with HER2mu NSCLC treated with ICI alone or in combination with chemotherapy within the German National Network Genomic Medicine Lung Cancer consortium by means of overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). Results: ICI either in combination with chemotherapy or as monotherapy was applied as first-line treatment in 27 patients, whereas 34 received single-agent ICI in second or subsequent lines. Patient characteristics were in line with previously published data. In treatment-naive patients receiving ICI in combination with chemotherapy, the ORR, median PFS, and OS rate at 1 year were 52%, 6 months, and 88%, respectively. In second or subsequent lines, ICI monotherapy was associated with an ORR of 16%, a median PFS of 4 months, and a median OS of 10 months. Conclusions: ICIs are effective as monotherapy and in combination with platinum-doublet chemotherapy. Therefore, ICI-based treatments may be found as the current standard of care and benchmark for targeted therapies in HER2mu NSCLC. (C) 2021 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved
    corecore